Fault Diagnosis and Performance Assessment for a Rotary Actuator Based on Neural Network Observer
نویسندگان
چکیده
Substantial damage may occur when a rotary actuator fails during operation. Therefore, effective fault diagnosis of a rotary actuator is crucial to ensuring the safety of the device. However, only a few studies on fault detection, fault isolation, and performance assessment have focused on rotary actuators. In this study, fault detection and fault isolation processes were implemented by designing two observers based on a neural network, and a method that assesses the performance of the rotary actuator is proposed. First, two observers are established according to the structure of the rotary actuator. Data in their normal state are used to train the neural networks. Second, a radial basis function (RBF) neural network is employed to estimate the expected output of the system to generate residuals, and self-adaptive thresholds are obtained through another RBF neural network in each observer. The information on the observers is applied for fault isolation. Third, the residual is input into the self-organizing mapping neural network trained by the residual values in their normal state to normalize the performance of the rotary actuator into confidence values between 0 and 1. Finally, the detection and assessment of two typical faults in a rotary actuator were simulated. The results demonstrate that the proposed method is able to assess the performance of rotary actuator and detect faults suitably.
منابع مشابه
On the development of a sliding mode observer-based fault diagnosis scheme for a wind turbine benchmark model
This paper addresses the design of an observer-based fault diagnosis scheme, which is applied to some of the sensors and actuators of a wind turbine benchmark model. The methodology is based on a modified sliding mode observer (SMO) that allows accurate reconstruction of multiple sensor or actuator faults occurring simultaneously. The faults are reconstructed using the equivalent output err...
متن کاملOn the development of a sliding mode observer-based fault diagnosis scheme for a wind turbine benchmark model
This paper addresses the design of an observer-based fault diagnosis scheme, which is applied to some of the sensors and actuators of a wind turbine benchmark model. The methodology is based on a modified sliding mode observer (SMO) that allows accurate reconstruction of multiple sensor or actuator faults occurring simultaneously. The faults are reconstructed using the equivalent output err...
متن کاملA Robust Adaptive Observer-Based Time Varying Fault Estimation
This paper presents a new observer design methodology for a time varying actuator fault estimation. A new linear matrix inequality (LMI) design algorithm is developed to tackle the limitations (e.g. equality constraint and robustness problems) of the well known so called fast adaptive fault estimation observer (FAFE). The FAFE is capable of estimating a wide range of time-varying actuator fault...
متن کاملRobust H-Infinity Actuator Fault Diagnosis with Neural Network
The paper deals with the problem of a robust actuator fault diagnosis for Linear Parameter-Varying (LPV) systems with Recurrent Neural-Network (RNN). The preliminary part of the paper describes the derivation of a discrete-time polytopic LPV model with RNN. Subsequently, a robust fault detection, isolation and identification scheme is developed, which is based on the observer and H∞ framework f...
متن کاملDeveloping A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults
Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...
متن کامل